Extensions 1→N→G→Q→1 with N=C4 and Q=C22×3- 1+2

Direct product G=N×Q with N=C4 and Q=C22×3- 1+2
dρLabelID
C22×C4×3- 1+2144C2^2xC4xES-(3,1)432,402

Semidirect products G=N:Q with N=C4 and Q=C22×3- 1+2
extensionφ:Q→Aut NdρLabelID
C4⋊(C22×3- 1+2) = C2×D4×3- 1+2φ: C22×3- 1+2/C2×3- 1+2C2 ⊆ Aut C472C4:(C2^2xES-(3,1))432,405

Non-split extensions G=N.Q with N=C4 and Q=C22×3- 1+2
extensionφ:Q→Aut NdρLabelID
C4.1(C22×3- 1+2) = D8×3- 1+2φ: C22×3- 1+2/C2×3- 1+2C2 ⊆ Aut C4726C4.1(C2^2xES-(3,1))432,217
C4.2(C22×3- 1+2) = SD16×3- 1+2φ: C22×3- 1+2/C2×3- 1+2C2 ⊆ Aut C4726C4.2(C2^2xES-(3,1))432,220
C4.3(C22×3- 1+2) = Q16×3- 1+2φ: C22×3- 1+2/C2×3- 1+2C2 ⊆ Aut C41446C4.3(C2^2xES-(3,1))432,223
C4.4(C22×3- 1+2) = C2×Q8×3- 1+2φ: C22×3- 1+2/C2×3- 1+2C2 ⊆ Aut C4144C4.4(C2^2xES-(3,1))432,408
C4.5(C22×3- 1+2) = C2×C8×3- 1+2central extension (φ=1)144C4.5(C2^2xES-(3,1))432,211
C4.6(C22×3- 1+2) = M4(2)×3- 1+2central extension (φ=1)726C4.6(C2^2xES-(3,1))432,214
C4.7(C22×3- 1+2) = C4○D4×3- 1+2central extension (φ=1)726C4.7(C2^2xES-(3,1))432,411

׿
×
𝔽